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eliipse and other quantities to a limited degree of accuracy. In the case of a punch with planar base, when the 
solution of (2.2) is sought in a class of functions having a root singularity on ?J~I, all the required quantities can 
be found to any degree of accuracy (in this case, the contact ellipse is assumed to be known). 
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A new effective criterion is proposed for the validity of Hadamard’s condition in a non-linearly elastic 

compressible body. The verification of Hadamard’s condition reduces to analysing a simply structured 

system of inequalities, so that its validity can be inv~stigatcd by anaiytical means, using the same technique 

for all compressjbl~ materials. 

INTRODUCTION 

IT MAS been shown [l] that for an isotropic incompressible material Hadamard’s condition, 
according to which the velocities of propagation of plane waves of small amplitude in a uniformly 
stressed elastic medium must be real [2,3], is equivalent to a system of nine elementary inequalities. 

.bPrikl. Mat. Mekh. Vol. 56, No. 2. pp. 296-305, 1992 
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For a compressible medium, however, though a method that should lead to elementary inequalities 
equivalent to Hadamard’s condition has been indicated [l], the structure of some of these 
inequalities is so complicated that no finite system has actually been presented. Nevertheless, 
following the technique developed in [l], one can derive 12 elementary inequalities 

ar,o* @A,4 Th*+J#&>o (O-1) 

in which the parameters ok, &, y,$ (k = 1, 2, 3) are expressed in terms of the elastic potential TI, 
and four implications of the form 

r; @,,~O)=cA,,,~O (m=O, $2.3) (0.2) 
t.=, 

The indices i, j, k in (0.1) constitute any permutation of the numbers 1,2,3. The symbol /2 denotes 
conjunction of statements, while a,, , A, (m = 0, 1, 2: 3; n = 1, . . . , 6) denote the cofactors and 
determinants, respectively, of the matrices 

(O-3) 

Inequalities (0.1) are identical in structure to the corresponding inequalities for an incompressible 
material and are generally not amenable to further simplification. On the other hand, the 
implications (0.2) are rather complicated in structure; to verify the validity of each of them one has 
to compute seven determinants, six of second-order and one of third-order-a fairly difficult task. 

The device proposed in [I] for deriving elementary inequalities equivalent to Hadamard’s 
condition relies on a criterion, formulated by Gurvich and Lur’ye, for a quadratic form of N 
variables (where N is any natural number) to be partially positive semidefinite. Below we shall 
propose a formulation of the criterion, different from that in [l], for the special case N = 3 
(Theorem 1); using this criterion one can obtain a more simply structured system of elementary 
inequalities. This gives a substantial reduction in the amount of computations necessary to verify 
Hadamard’s condition. It will be proved that when N = 3 the Gurvich-Lur’ye criterion is equivalent 
to our Theorem 2. An effective sufficient condition will be established for Hadamard’s condition to 
be valid (Theorem 3). A mechanical interpretation of the individual inequalities of system (0.1) will 
be presented. Examples of compressible elastic materials will be considered. The method may be 
used to obtain effective criteria for the equilibrium equations of a non-linearly elastic medium to be 
strongly elliptic [2, 41 and for an isotropic compressible material to be positively longitudinally 
elastic 131. 

1. THE CRITERION FOR A QUADRATIC FORM OF THREE VARIABLES TO BE 

PARTIALLY POSITIVE SEMIDEFINITE 

Consider a quadratic form R 

L(5)== 2 Uiji?TiZj 

i. 1-t 

(1.1) 

We shall say that L(X) is partially positive semidefinite if it is non-negative for any x1 2 0, x2 9 0, 
X330 [l]. 

Theorem 1. The quadratic form (1.1) is partially positive semidefinite if and only if, for any 
permutation i, j, k of the indices 1, 2, 3, 

UU-20, Qij+)laiiQg>O (1.2) 
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Proof The necessity of conditions (1.2) is obvious, so we need only prove the necessity of the 
implication (1.3). Indeed, assuming that ski < 0, akj< 0, fix arbitrary values of xi 3 0, Xi> 0 and 
consider the behaviour of L(x) as a function of x k. By conditions (1.2) and our assumption that uki, 
ffkj are IIegatiVe, we have 6&k > 0. Therefore L(X) is a quadratic trinomial in xX_ with positive leading 
coefficient, which, as can be checked reaches a minimum at the point 

x,O=-a,, -’ (U,,Xi+a,Xj) 20 (1.4) 

The minimum value of L(x) is obtained by substituting xk” into (1.1): 

IXliIl L fS) = Q;;I: [(@,kkffii - Uii) Xi2 f- (akkUjj_ a;t-j) Xj* f 

=k 

+ 2 (@‘kk%j - nkiakj) XLxj] (1.5) 

Since L(x) is positive semidefinite and xk “30, the quadratic form on the right of (1.5) must be 
non-negative for all xi B 0, xi SO, and this implies the conclusion of the implication (1.3). 

We will now prove sufficiency. Clearly, inequalities (1.2) guarantee that L(x) is partially positive 
semidefinite in the coordinate planes x,,~ = 0 (m = 1,2,3). Discarding the trivial case in which some 
of the diagonal elements al,, a22, a33 vanish, we may assume that a,, >O (m = 1,2,3). There are 
two possibilities: either two of the coefficients u12, ~2.3, ~31 are non-negative or two of them are 
negative. The first case causes no difficulties. In the second case there is a permutation i, j, k such 
that a&<O, akj<O and, as is readily checked, L(x) attains a minimum at the point xk’) defined by 
(1.4). By (1.5), the second condition of (1.2) and (1.3) imply that min+L(x) is non-negative for 
xi 3 0, xi 2 0, so that L (x) is indeed positive semidefinite. This proves the theorem. 

Theorem 2. In the special case of a form in three variables, the Gurvich-Lur’ye criterion [l] is 
equivalent to the criterion formulated in Theorem 2. 

Proof. Let a be the matrix of the form L(x) and A the adjoint matrix of a, that is, the matrix 
whose elements A, are the cofactors of the aijs. According to the Gurvich-Lur’ye criterion, which is 
applicable for arbitrary N (N being the order of the form), a quadratic form L (x) is partially positive 
semidefinite if and only if (a) it possesses that property over each of the coordinate planes x, = 0 
(m=l, . . . . N); (b) if the elements of the adjoint matrix A are non-negative, then so is the 
determinant of a. 

Assuming that inequalities (1.2) are satisfied, we shall prove that the following assertions are 
equivalent: 

(1) the implications (1.3) hold for any permutation i, j, k of the numbers 1,2, 3; 
(2) if all the elements of the adjoint matrix A are non-negative, then detuZ0, i.e. 

To that end, we shall show that if one of these assertions is false, then so is the other. Suppose, for 
exaple, that assertion 1 is false. Then there is a permutation i, j, k of 1, 2, 3, such that 

%i+ ati< (1.7) 

flahaij-U*,U*j+ (~**~~i-U~~)‘~ ( U*Ujj--a$)“80 (1.8) 

It will then follow from (1.2) and (1.7) that a,& > 0. 
It can be shown that all the elements A,, (m, rz = 1, 2, 3) of the adjoint matrix A are 

non-negative. 
In fact, for Aii, Al this follows from (1.7) and the second inequality of (1.2): and for Aij it follows from (1.6), 

since inequality (1.8) can be written in the form 
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Atj’fAttAjj (1.9) 

Before considering the three remaining elements Aki, Akj and Akk, let us determine the sign of deta. To that 

end we use the identity 

det a=ak~-L(Ai‘A~i-A~j2) (1.10) 

Since akk > 0, it follows by (1.9) that 

det at0 (1.11) 

Writing down the explicit expressions for Akr, Ak,, Akk, the readers can convince themselves that when 

U;j < 0 they are all non-negative, by (1.2) and (1.7). But if ai, 3 0, it will again follow from the formula 

det. ~=aiiA,i+n,jA,j+oi~A~~ (1.12) 

and from inequality (1.11) that Aik _- ‘0 (and similarly for Ajk). Further, using the inequality A;j>O, one obtains 

an upper bound for aij ; applying this bound together with (1.7) and (1.2), we see that in this case too Akk > 0. 
Since all the elements A,, (m, II = 1, 2, 3) are non-negative while at the same time inequality 

(1.11) is valid we have a contradiction to (1.6), as required. 
Let us assume now that assertion 2 is false. This means that A,, 30 (m, n = 1, 2, 3). We shall 

show that because of this there exists a permutation i, j, k of 1, 2, 3 such that conditions (1.7), (1.8) 
are valid, i.e. assertion 1 is also false. Indeed, under our assumptions, using formulas similar to 
(1.12), one can show that each row of a contains at least one negative off-diagonal element. But 
then there must be a row in which both off-diagonal elements are negative, say row k. Then 
conditions (1.7) are satisfied for indices i, j chosen arbitrarily to complete k to a permutation i, j, k of 

1, 2, 3. As to (l.S), it is equivalent to inequality (1.9) and is thus true thanks to (1.10) and (1.11). 
We have thus proved the theorem. Simultaneously, we have found a fairly simple proof of the 

Gurvich-Lur’ye criterion for N = 3. 

2. THE SYSTEM OF ELEMENTARY INEQUALITIES EQUIVALENT TO HADAMARD’S 

CONDITION 

We will use the following notation (i, j, k is an arbitrary permutation of the indices 1, 2, 3): 

(2.1) 

We will assume that the specific potential energy of the deformation II is a twice continuously 

differential function of the principal dilatations vl, v2 and v3 [2, 31, also known as the principal 
multiplicities of the elongations. For a compressible material, Hadamard’s condition is equivalent 

[l] to the condition that the four quadratic forms in three variables with matrices a(), al, a2, a3 [see 
(0.3)] are partially positive semidefinite. Therefore, Theorem 1 yields the following system of 

elementary inequalities: 

a&O, fiRa (2.2) 

~**+)I~i~j>O (2.3) 

( yi”<O) A ( yj”<O) */3k~*m”-~imyj”+ 

+1~~~j~(~i”)‘]‘“[~~~~~(~j”)‘]‘“~0 (2.4) 

where i, j, k is an arbitrary permutation of 1, 2, 3. The symbols m, n in (2.4) take values plus and 
minus, and their product mn is defined by the usual rule for multiplication of the numbers + 1, - 1, 
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i.e. mn is plus if m, y1 are the same, minus otherwise. Condition (2.4) must hold for any choice of 
signs (2.4). 

The implication (2.4) is clearly much simpler than (0.2). As shown by actual examples, it may 
frequently be checked by entirely analytical means. It is also worth stressing that of the twelve 
implications (2.4) corresponding to all permutations i, j, k of 1,2, 3 and all sign combinations m, II, 
at least nine will always be valid if inequalities (2.2), (2.3) are valid. 

Indeed by (2. l), the parameters yktt yk- and 0~~ satisfy the condition 

yr++yr-=2a, (2.5) 

which shows that yk+, yk- cannot both be negative if ok 3 0. 
Thus, of the six quantities Y,++ (k = 1, 2, 3), at most three are negative, so that in the “worst 

possible” case one has to check only three implications (2.4). The nine others will be valid 
automatically, since their premises are false. It can also be shown that the “worst possible” scenario 
involves three negative coefficients of the form Y;+, yjyi+, yk- or Yi-, rj-, Yk-, while in all other cases 
it is either necessary to check only one implication (2.4) (at least two negative coefficients) or they 
are all surely true (one negative coefficient or none). Consequently, the criterion established in 
Theorem 1 not only considerably simplifies the structure of the implications (0.2) but reduces the 
number of implications to be checked. 

Thus, for a compressible material, a system of elementary inequalities equivalent to Hadamard’s 
condition will generally consist of 12 unconditional inequalities (2.2), (2.3) and three conditional 
ones of type (2.4), i.e. all in all 15 inequalities (as against nine for an incompressible material). 
True, using (2.5) one can show that the pair of inequalities (2.3) may be replaced by their product 

(rk++@&) (y*-+JgsBI) 20 (2.6) 

or 

fii~j+2ahl~+~k+rh_ > 0 (2.7) 

but by the accepted convention [l] inequalities (2.7) cannot be considered elementary, since each of 
them splits into two simpler ones. 

It is well known f2,3) that inequalities (2.2) admit of a simple physical interpretation (in both the 
static and acoustic contexts). In particular, the conditions ak. ‘0 are a weakened version of the 
Baker-Ericksen inequalities [5, 31, representing the statement that if one compares two principal 
expansions in a given element of the material, the larger of them corresponds to a principal stress 
which is at least as large. 

It turns out that inequalities (2.3) also have a clear-cut mechanical meaning. Assuming that 
inequaIities (2.2) are valid and using the usual representation for the components of the acoustic 
tensor [2, 31 in the principal axes of Finger’s measure of deformation, one can show that in a 
homogeneous stressed elastic medium the squared velocities of plane waves polarized in the 
principal plane xk = 0 and travelling in the direction of the normal n with components 

F.tit=Ygit?jtO, Rjz=f&Vi2e, Il*‘“O (24 

&=(l$iiUi2+)I~U~)-~ 

are determined by the relations 

p,Cr*=K((~r"+)Tg;gj)(~~-+~~~j>t fhCr2=KZ 

K~=2@&v~vj’9M-‘, Kz=‘I2vi2~jreM 

M = CfFi + 1/K) (as + l%O i- ttl% - Y302 X 

x (% + ‘risip,12 + (Yk+ - h-J2 mw 

(2.9) 

where p0 is the density of the material in the undeformed state; cl and c2 are the wave velocities. 
Clearly, a sufficient condition for cz to be real is the validity of inequalities (2.2); but for c, to be 
real, we need, besides (2.2), also inequalities (2.6) [or (2.3)]. 
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In (2.8) and (2.9) it is assumed that 

(G+B:) (a*‘+~i”) (/3i2+B:)+o (2.10) 

If pi = pj = 0 but (Yk #O, then formulas (2.9) are valid for any normal n in the plane xk = 0, but the 
formulas for KI, K2 and M become 

KI=2v,2vfni2njfM-‘, K,=‘I,M 

In all other cases in which (2.10) is false, we have cl = c2 = 0, Yk’ + mj = 0, i.e. formulas (2.9) 
may again be considered valid, if we put K2 = 0. In that case the corresponding direction n is either 
defined by (2.8) (if the latter are meaningful) or any direction in the plane xk = 0 (otherwise). 

Thus, inequalities (2.6) [or (2.3)] ex p ress the condition that cl is real. 
Inequalities (2.2) and (2.3) taken together are necessary and sufficient for Hadamard’s condition 

to hold in the principal planes of the Finger measure of deformation. As for the implications (2.4), 
they should be regarded as additional constraints, which guarantee that the elastic wave velocities 
will be real not only in the principal planes but in any direction n. 

Our results up to this point imply the following test for the validity of Hadamard’s condition. 

Theorem 3. If v, , v2 and v3 are given and for any permutation i, j, k of the indices 1, 2, 3 and any 
combination m, II of the signs plus, minus inequalities (2.2) and (2.3) are true and moreover 

(ri”<O) A(rj”<O) *~~~*““-~i”~j”>O (2.11) 

then the material under consideration satisfies Hadamard’s condition at the point (vi, v2, v3) of the 
dilatation space. 

The proof is obvious and will therefore be omitted. 

Remarks. 1. If one replaces the symbol 2 throughout (2.2)-(2.4) by >, the result is a system of elementary 
inequalities equivalent to the condition that the equilibrium equations of a non-linearly elastic medium be 
elliptic [2, 31. A similar version of Theorem 3 is also valid. 

2. Using Theorem 1, one can formulate an effective criterion for an isotropic compressible material to be 
positively longitudinally elastic [3]; we shall not dwell on that here. 

3. VERIFICATION OF HADAMARD’S CONDITION 

We will now consider a few examples of the verification of Hadamard’s condition by the 
technique outlined in Sec. 2. 

Compressible Mooney-Rivlin material (or Hadamard material) [2] 
The specific potential energy of the deformation is defined by 

rr=c,l,+c,f,+f(z,) (c,>O, G-0) (3.1) 

z,=v,*+v*~+v~~, I*=v,“v2~+v~2v~~+v,2v,~, I,=v,=V~2V,* 

where Ii, Z2 and Z3 are the principal invariants of the Finger deformation measure, f is a twice 
continuously differentiable function of the third invariant Z, and cl and c2 are constants. If the 
reference configuration is identical with the natural state and the latter is given the value n = 0, then 
f must also satisfy the condition 

f(i)+3(c,+c,)=o, f’(l)+c,+2c,=o (3.2) 

where the prime means differentiation with respect to 1,. It is easy to see that II will be positive if 
and only if 
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3 ( c,z3”+c21$~‘~) +j( I$) >o 

Indeed the necessity follows from an examination of 

RUDEV 

(IsJ’i) (3.3) 

the potential (3.1) on the straight line 
vI = v-, = v3 in the dilatation space, while the sufficiency follows by using the obvious bounds 

f,231,‘“, Z,>31,” 

and the fact that c, >O, c2>0. 

(3.4) 

Putting cli -f’ + 2Z$‘, we deduce from (2.1) and (3.1) that 

&=2(C*+C&~*)* p&=2 [C*+CZ(Uf+Uj*) +CSUi2Uj2f 

~~*t==2(C(+C~U~Z)f2UiUj(C~+C~U~‘) 

where i, j, k is an arbitrary permutation of 1, 2, 3. Conditions 2.2 become 

C~+CEU&‘>Oy CL+C*(Uiz+Uj2)+C3UiZUiZ~0 (3.5) 

We shall show that inequalities (3.5) imply that the quantities yk+ (k =1 1, 2, 3) are non-negative. 
Indeed, this is obvious if c2 + es vkz 2 0, while if cs + cs vkz <O it follows from the identity 

2~~+~~i+~j-2(U~-Uj)*(C*+C~U~*) (34 

which in turn is easily verified using (3.4). 
Thus, the inequalities 

r*++,‘s;s;>o (3.7) 

will always be valid if conditions (3.5) are satisfied. 
We will now verify that 

yr-+ Ym> 0 (3.8) 

If c2 + c2 vk2d0, then yk->O and (3.8) 1s valid. Let c2 + c3vlc2>0. Then by (3.4) and (3.5), 

~i~ZUj’(C*+C~U~z), /3j>2Ui’(C*+C.$U*2) 

which implies that 

yr-+YaiSj>2(c,+c,v,‘)~o 

i.e. conditions (3.8) are valid in any case. 
Finally, let us consider the implication (2.4). As shown previously, only the quantities yk- (k = 1, 

2, 3) may be negative. Suppose that yi- ~0, ri- <O. Then by (3.4) we must have 

C*fCJU<*~Oq C2+CSUj2>0 (3.9) 

A direct check will now convince the readers of the truth of the identity 

B*r*+-Ti+rj-=4(U*+Ui) (U,+Uj)X 

x [ (C,fC,UiUJ tcz+ CJU+Uj) +Cs*( Vi-Uj)“] (3.10) 

in which the right-hand side is non-negative, because by (3.9), irrespective of the sign of cj, we have 
Cz+C3ViVj>O. 

Thus, by Theorem 3, inequalities (3.5) are not only necessary but also sufficient for Hadamard’s 
condition to hold. Incidentally, our proof of this statement made no use of the restrictions cl >O, 
cz>O. If we assume that they are valid, then the only inequalities remaining in (3.5) are 

C*+C*(U~t+UjZ)+C~UiZUj2~0 (3.11) 

This condition is clearly valid for all vi , v2, vs if and only if 

cs=j’+2l,j”>o (3.12) 
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Consequently, a compressible Mooney-Rivlin material will satisfy Hadamard’s condition for 

arbitrary deformations if and only if condition (3.12) is satisfied. 
As an example, consider the three-constant potential 

rI=c‘(11-3)+C*(1*-3)+C0(/3-l)+(C,+2cZ+CLl)(I~-’-l) 

(Co, Cl, Q’O) 

It is readily seen that conditions (3.2) and (3.3) hold for this potential. Moreover, 

j(~~)=c~(ls-i)+(c,+2c,+co)(I~-‘-l)-3(c,+c,) 

ca - co + 
3 (Cl + 2Cl-t co) 

13 >o 

i.e. equality (3.12) is valid. 

Signorini material [2] 
We will confine our attention to the simplified Signorini model, which is the potential 

II=‘/J,-“l[ (9h+5p) -2(3h+p)J,+ (h+p)/r’] -p (3.13) 

l,=uI-*+u~-z+u~-z, 3,=V,-2v*-ZV,-2; x, p=const 

where J, and J3 are the first and third principal invariants of the Almansi measure of deformation 

[2, 31. The sufficient conditions for II to be positive are [2] 

p>o, 9k.+5p>O (3.14) 

Without dwelling on the proof, we note that these conditions are not only sufficient but also 

necessary. 

Using (2.1) and (3.13), we obtain 

ak=‘/2Ui-‘Uj-‘V~[ (h+p)],- ($+p)] 

P~=‘/~ViU*Vk-3 1 h+dJ,- (3h+p) +2(A+p) u~--~I 

~k*“l*Ui-‘Vj-‘Uk [ (h+p) I#- (31+j.k) *2 (A+l.l) U*-‘Vj-‘1 

(3.15) 

Using these formulas, we reduce inequalities (2.4) to the form 

(h+p)/,- (3k+p) >o (3.16) 

(L+~)I,-(3h+l.L)+2(3c+~)uk-z>0 

It is clear that conditions (3.16) are sufficient for the quantities yk+ (k = 1, 2, 3) to be 

non-negative. Thus inequalities (3.7) are satisfied. The proof of (3.8) is exactly the same. Thus, 
conditions (2.3) are in this case corollaries of (2.2). 

Now, by (3.15), 

~*~~+-~(-~j-=‘/*V~-2 (Uk-‘l-U{-‘) (V*-‘+Uj-‘) ()L+p) X (3.17) 

X [ (h+P)Jfi-- 13h+P) I 

If yi- <O, rj- <O, then necessarily A + p>O; thus it follows from (3.17) that the implications (2.4) 

are always valid if inequalities (3.16) are valid. 
Thus, Hadamard’s condition for the case of the simplified Signorini law (3.13) reduces to 

inequalities (3.16). Incidentally, if the necessary and sufficient conditions (3.14) are satisfied, the 
second inequality of (3.16) follows from the first, because in that situation A + k>O. Thus all that 
remains in (3.16) is a single inequality. For the model (3.13), therefore [assuming the restrictions 
(3.14)], we see that Hadamard’s condition is valid for any deformations if and only if 

3?b+p<o (3.18) 
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Note that inequality (3.18) is compatible with (3.14), as may be verified by setting, say, A = -4 
and p = 9. 

Similar examinations may be made for other examples of isotropic compressible elastic materials. In 
particular, the method of Sec. 2 reproduces previously known results in connection with the verification of 
Hadamard’s condition (for a semilinear John material [2], special cases of Blatz-Ko materials [6], or an elastic 
Euler fluid [3]), obtained by applying Sylvester’s criterion to the matrix of components of the acoustic tensor or 
by various artificial devices [l, 2,4,7, 81. It should also be noted that in all the models just listed, as in (3.1) and 
(3.13), and various others, the premises of Theorem 3 are valid; thus the range of applicability of that theorem 
is fairly wide. 

Analysis of specific examples indicates that the technique outlined in Sec. 2 for verifying Hadamard’s 
condition is quite effective. Its advantage over other methods (such as the use of Sylvester’s criterion [Z, 41 or 
different kinds of artificial devices [l, 81) is, on the one hand, the fact that the operations to be applied are the 
same for all compressible materials; on the other, conditions (2.2)-(2.4) involve no additional parameters. In 
addition, the comparative simplicity of inequalities (2.2)-(2.4) generally makes it possible to check the validity 
of Hadamard’s condition by analytical means. This can be done, for example, with such models as Murnaghan 
materials [2] and the general case of Signorini [2] and Blatz-Ko [2, 61 materials. When other methods are 
effective, the method of this paper is no more laborious and leads just as rapidly to the desired result. 
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